skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Helliker, B_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Shrub encroachment is one of the primary threats to mesic grasslands around the world. This dramatic shift in plant cover has the potential to alter ecosystem‐scale water budgets and responses to novel rainfall regimes. Understanding divergent water‐use strategies among encroaching shrubs and the grasses they replace is critical for predicting shifts in ecosystem‐scale water dynamics as a result of shrub encroachment, particularly if drought events become more frequent and/or severe in the future.In this study, we assessed how water‐use traits of a rapidly encroaching clonal shrub (Cornus drummondii) and a dominant C4grass (Andropogon gerardii) impact responses to changes in water availability in tallgrass prairie. We assessed intra‐annual change in depth of water uptake, turgor loss point and stomatal regulation in each species. Sampling took place at Konza Prairie Biological Station (northeastern KS, USA) during the 2021 and 2022 growing seasons.Cornus drummondiishifted from shallow to deep soil water sources across the 2021 and 2022 growing seasons. This plasticity in depth of water uptake facilitated a ‘wasteful’ water‐use strategy inC. drummondii, where stomatal conductance and transpiration rates continued to increase even when no further gain in photosynthetic rate occurred.A. gerardiiphotosynthetic rates and stomatal conductance were more variable through time and were more responsive to changes in leaf water potential thanC. drummondii. However, intra‐annual adjustment of turgor loss point was more pronounced inC. drummondii(ΔπTLP = −0.48 MPa ± 0.15 SD) than inA. gerardii(ΔπTLP = −0.29 MPa ± 0.19 SD).Synthesis. These results suggest thatC. drummondiiis highly resilient to changes in water availability in surface soils and will likely remain unaffected by future droughts unless they are severe enough to reduce the availability of deep soil water. Given that clonal shrubs are key invaders of grasslands world‐wide, increased leaf‐level water loss is expected to accelerate ecosystem‐level drying as clonal shrub encroachment proceeds in mesic grasslands. 
    more » « less